

exercise: explicitly write out p

similarly another cover of X is

5) RP2 = 52/2 points in 52 ~ to an tipode

similarly 5" -> Rp" a covering map

$$\frac{|emma | f|}{|et | [\tilde{x}, \rho] be a covering space of a connected space X
the conducted space X
the conducted $|\rho^{-1}(x)|$ is independent of X

$$|\rho^{-1}(x)| \text{ is called the degree of the covering space}$$

$$\frac{Proof:}{|et A = \{x \in X: |\rho^{-1}(x)| = k\}}$$

$$|et A = \{x \in X: |\rho^{-1}(x)| = k\}$$

$$|f x \in A \text{ then let } U \text{ be a circly covered ubbid of } x$$

$$so \ p^{-1}(v) = \{V_{1,...}, v_{k}\}$$

$$\therefore |\rho^{-1}(x)| = k \ \forall \ x' \in U$$

$$\therefore U \subset A \text{ and } A \text{ open}$$

$$similarly X - A \text{ open so } A \text{ closed}$$

$$\therefore X = A \text{ since } K \text{ connected } \mathbf{sr}$$

$$H (\tilde{X}, \rho) \text{ a covering space of } X$$

$$f: Y \to X \text{ a continuous map}$$

$$f: Y \to X \text{ a continuous map}$$

$$f: f(v_{k}) = x_{k} \text{ and } \tilde{x} \in X \text{ spin} = x_{k}, \text{ then } \tilde{f} \text{ is a lift of } f \text{ bosed at } \tilde{x}_{k}$$

$$if f(v_{k}) = \overline{x}_{k}$$

$$emma 20:$$

$$(X, \rho) \text{ a covering space of } X, x_{k} \in X \text{ and } \tilde{x}_{k} \in S \text{ spin} = \tilde{x}, \text{ then } \tilde{f} \text{ is a } p \text{ order } \tilde{x}_{k}$$

$$(f, f(v_{k})) = \tilde{x}_{k} \text{ is a lift of } f \text{ based at } x_{k} \text{ based at } \tilde{x}_{k}$$

$$(f, f(v_{k})) = -\overline{x} \text{ is a homotopy } \text{ with } h_{k}(v_{k}) = H(v_{k})$$

$$(x_{k}) = A \text{ bit } f(v_{k}) = X \text{ based at } \tilde{x}_{k}$$

$$(f, f(v_{k})) = -X \text{ is a homotopy } \text{ with } h_{k}(v_{k}) = H(v_{k})$$

$$(f, f(v_{k})) = X \text{ is a homotopy } \text{ with } h_{k}(v_{k}) = H(v_{k})$$

$$(f, f(v_{k})) = X \text{ is a homotopy } \text{ with } h_{k}(v_{k}) = H(v_{k})$$

$$(f, f(v_{k})) = -X \text{ is a homotopy } \text{ with } h_{k}(v_{k}) = H(v_{k})$$

$$(f, f(v_{k})) = -X \text{ is a homotopy } \text{ with } h_{k}(v_{k}) = H(v_{k})$$

$$(f, f(v_{k})) = -X \text{ is a homotopy } \text{ if } H(v_{k})$$$$

Proof: same as proof of lemma 12 (exercise)

Examples:
1)
$$p: (R \rightarrow 5^{1})$$

 $p_{*}: T_{i}(R) \rightarrow T_{i}(5^{1})$ no non-trivial loop on 5^{i} lefts to a loop in R
 fe_{i} g_{i} degree = $00 = [I : \{0\}]$
2) $p_{n}: 5^{i} \rightarrow 5^{i}$
 $(P_{n})_{*}: T_{i}(5^{i}) \rightarrow T_{i}(5^{i})$ so $in(P_{n})_{*} = n I$
 $I = 0$
 I

similarly
$$\widetilde{H}(l_{1}t)=\widetilde{\mathfrak{F}}_{0}=\widetilde{H}(\mathfrak{f},\mathfrak{l})$$

so $\widetilde{Y} \sim e_{\widetilde{\mathfrak{F}}_{0}}$ by \widetilde{H} and $\widetilde{[\mathfrak{Y}]}=\widetilde{\mathfrak{F}}_{-1}$
(2) clearly if $\widetilde{\mathfrak{Y}}[t_{\mathcal{T}}(X,\mathfrak{n}) \text{ and } \mathscr{V}[t_{\mathcal{T}}(\mathfrak{f},\mathfrak{r})]=\mathfrak{V}$
and if $\widetilde{\mathfrak{Y}}]=\mathfrak{p}_{1}(\mathfrak{f},\mathfrak{l})$, then $\widetilde{\mathfrak{Y}}\sim\mathfrak{p}_{\mathcal{T}}$ by bound $20, 6)$
the left \widetilde{T} of Y based at $\widetilde{\mathfrak{F}}_{0}$ is boundard to \mathfrak{P}
(ral and $\mathfrak{p}_{\mathcal{T}}(\mathfrak{f},\mathfrak{r}_{n})$
(s) let $H=\mathfrak{p}_{0}(\mathfrak{T}(\mathfrak{K},\mathfrak{r}_{n}))$
if $\widetilde{\mathfrak{T}}(\mathfrak{K},\mathfrak{K}_{n})$ and $[\mathfrak{S}]\in H$, then note
if $\widetilde{\mathfrak{T}}$ a left of Y based at $\widetilde{\mathfrak{F}}_{0}$
(s) let $H=\mathfrak{p}_{0}(\mathfrak{T}(\mathfrak{K},\mathfrak{r}_{n}))$
if $\widetilde{\mathfrak{T}}(\mathfrak{K},\mathfrak{K}_{n})$ and $[\mathfrak{S}]\in H$, then note
if $\widetilde{\mathfrak{T}}$ a left of Y based at $\widetilde{\mathfrak{F}}_{0}$
(s) let $H=\mathfrak{p}_{0}(\mathfrak{T}(\mathfrak{K},\mathfrak{r}_{n}))$
if $\widetilde{\mathfrak{T}}(\mathfrak{K},\mathfrak{K}_{n})$ and $[\mathfrak{S}]\in H$, then note
if $\widetilde{\mathfrak{T}}$ a left of Y based at $\widetilde{\mathfrak{F}}_{0}$
(s) $\mathfrak{F}(\mathfrak{T}(\mathfrak{K},\mathfrak{K}_{n}))$ and $[\mathfrak{S}]\in H$, then note
if \mathfrak{F} a left of \mathfrak{F} be a loop (and $\widetilde{\mathfrak{S}}\widetilde{\mathfrak{T}}=\widetilde{\mathfrak{S}}\circ\widetilde{\mathfrak{T}})$
if $\mathfrak{L}(\mathfrak{T})=\mathfrak{P}(\mathfrak{T}(\mathfrak{K}))$ then $\widetilde{\mathfrak{T}}(\mathfrak{K})$ be a loop (and $\widetilde{\mathfrak{S}}\widetilde{\mathfrak{T}}=\widetilde{\mathfrak{S}}\circ\widetilde{\mathfrak{T}})$
if $\mathfrak{L}(\mathfrak{T})=\mathfrak{F}(\mathfrak{K})$ then $\mathfrak{F}(\mathfrak{K})=\mathfrak{F}(\mathfrak{K})$
if $\mathfrak{T},\mathfrak{e}\,\mathfrak{p}^{-1}(\mathfrak{K})$ then $\mathfrak{L}(\mathfrak{K})=\mathfrak{F}(\mathfrak{K})$
if $\mathfrak{T},\mathfrak{e}\,\mathfrak{p}^{-1}(\mathfrak{K})$ then $\mathfrak{L}(\mathfrak{K})=\mathfrak{F}(\mathfrak{K})$ the for \mathfrak{K} as path \mathfrak{K}_{0} to $\widetilde{\mathfrak{K}}$,
 $\mathfrak{T}=\mathfrak{p}\cdot\widetilde{\mathfrak{T}}$ is $\mathfrak{I}(\mathfrak{h}=\mathfrak{F})$ and $\mathfrak{L}(\mathfrak{K})=\mathfrak{F}(\mathfrak{K})$
now suppose $\mathfrak{h}(\mathfrak{H}(\mathfrak{K}))=\widetilde{\mathfrak{F}}(\mathfrak{K})$
is \mathfrak{K} if \mathfrak{T} are lifts of $\mathfrak{K},\mathfrak{P}$ based at $\widetilde{\mathfrak{K}_{0}}$
then $\mathfrak{F}(\mathfrak{K}:\mathfrak{F})=\mathfrak{L}(\mathfrak{K})$ if \mathfrak{K} and so $\mathfrak{K}_{0}(\mathfrak{K}:\mathfrak{F})) \in \mathfrak{H}(\mathfrak{K})$
 $\mathfrak{K},\mathfrak{K}$ if $\mathfrak{K}=\mathfrak{F}(\mathfrak{K})=\mathfrak{K}(\mathfrak{K})=\mathfrak{K}(\mathfrak{K})=\mathfrak{K}(\mathfrak{K})=\mathfrak{K}(\mathfrak{K})$
 $\mathfrak{K},\mathfrak{K}$ if $\mathfrak{K}=\mathfrak{K}$ is one-to-one

$$\begin{array}{l} \begin{array}{l} \left[(X, \rho) & \text{is a path connected covering space of X and x, \in X \\ \text{then} & \left\{ p_{u}(\pi, (\bar{X}, \bar{x})) \right\}_{\bar{X}} \in \rho^{-1}(k_{v}) \\ \text{is a conjugacy class of subgroups of } \pi_{v}(X, x_{v}) \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \begin{array}{l} P_{0}(\bar{\pi}, (\bar{X}, \bar{x})) \right\}_{\bar{X}} \in \rho^{-1}(k_{v}) \\ \text{is a conjugacy class of subgroups of } \pi_{v}(X, x_{v}) \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} P_{0}(\bar{\pi}, (\bar{X}, \bar{x})) \\ \text{is a conjugacy class of } subgroups of \\ \pi_{v}(X, x_{v}) \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} P_{0}(\bar{\pi}, (\bar{X}, \bar{x})) \\ \text{is a conjugacy class of } subgroups of \\ \pi_{v}(X, x_{v}) \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} P_{0}(\bar{\pi}, (\bar{X}, \bar{x})) \\ \text{is a conjugacy class of } subgroups of \\ \pi_{v}(\bar{X}, x_{v}) \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} P_{0}(\bar{\pi}, (\bar{X}, \bar{x})) \\ \text{is a conjugacy class of } subgroups of \\ \pi_{v}(\bar{X}, x_{v}) \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} P_{0}(\bar{\pi}, (\bar{X}, \bar{x})) \\ \text{is a conjugacy class of } subgroup \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} P_{0}(\bar{\pi}, (\bar{X}, \bar{x})) \\ \text{is a conjugate } p_{v}(\bar{\pi}, (\bar{X}, \bar{x})) \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} P_{v}(\bar{X}, \bar{X}) \\ \text{is a conjugate } p_{v}(\bar{\pi}, (\bar{X}, \bar{x})) \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} \begin{array}{l} P_{v}(\bar{X}, \bar{X}, \bar{X}) \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} P_{v}(\bar{Y}, \bar{Y})^{-1} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} P_{v}(\bar{Y}, \bar{Y})^{-1} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} P_{v}(\bar{Y}, \bar{Y})^{-1} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} P_{v}(\bar{Y}, \bar{Y})^{-1} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} P_{v}(\bar{Y}, \bar{Y})^{-1} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} P_{v}(\bar{Y}, \bar{Y})^{-1} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} P_{v}(\bar{Y}, \bar{Y})^{-1} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} P_{v}(\bar{Y}, \bar{Y})^{-1} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} P_{v}(\bar{Y}, \bar{Y})^{-1} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} P_{v}(\bar{Y}, \bar{Y})^{-1} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} P_{v}(\bar{Y}, \bar{Y})^{-1} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} P_{v}(\bar{Y}, \bar{Y})^{-1} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} P_{v}(\bar{Y}, \bar{Y})^{-1} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} P_{v}(\bar{Y}, \bar{Y})^{-1} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} \begin{array}{l} P_{v}(\bar{Y}, \bar{Y})^{-1} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} P_{v}(\bar{Y}, \bar{Y})^{-1} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} P_{v}(\bar{Y}, \bar{Y})^{-1} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} P_{v}(\bar{Y}, \bar{Y})^{-1} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} P_{v}(\bar{Y}, \bar{Y})^{-1} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} P_{v}(\bar{Y}, \bar{Y})^{-1} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{l} P_{v}(\bar{Y}, \bar{Y})^{-1} \\ \end{array} \\$$

$$\chi_0 \in Y \text{ st. } f(\gamma_0) = \chi_0$$

Then $\exists a \ lift \quad \widetilde{f}: Y \longrightarrow \widetilde{\chi} \ (\rho \circ \widetilde{f} = f) \ \text{st. } \widetilde{f}(\gamma_0) = \widetilde{\chi}_0$
 \Leftrightarrow
 $f_* (Ti(Y,\gamma_0)) \subseteq P_*(Ti(\widetilde{\chi},\widetilde{\chi}_0))$
(and if lift exists it is unique, see lemma 24 below)

Y is locally path connected if
$$\forall y \in Y$$
 and open sets U containing y, \exists an open
set $\forall st. y \in V \subset U$ and \forall is path connected
provide: the comb space $C = \{1, 1\} \times [0, 1] \cup [0, 1] \times [0]\}$ is
path connected but use locally path connected
front: (\Rightarrow) f_x $(T_{1}(Y, y_{x})) = p_{x}(T_{x}(T_{1}(Y, y_{x}))) \leq p_{x}(T_{x}(T_{x}(Y, y_{x}))) = p_{x}(T_{x}(T_{x}(Y, y_{x})))$
(=) for $y \in Y$ let Y be a path y_{x} to y
 $So f e Y$ is a path in X based at X_{x}
 $\exists I \mid H_{x} f T_{x}(x_{x}) = f_{x}(T_{x}(Y, y_{x}))$
 $let $(T_{x}(Y) \models F_{x}(T_{x})$ based at Y_{y}
 $So f_{x}(I_{x}(Y, \overline{y})) = p_{x}(T_{x}(T_{x}(X)))$
 $let $(f \cdot Y) \lor (f \cdot \overline{y}) \models I_{x}(Y, \overline{y})$
 $let $(f \cdot Y) \lor (f \cdot \overline{y}) \models I_{x}(Y, \overline{y}) = f_{x}(Y + f_{x})$
 $let $(g \cdot f) \lor (f \cdot \overline{y}) \models f_{x}(Y) = f_{x}(Y)$
 $let $(g \cdot f) \vdash (f \cdot \overline{y}) = f_{x}(Y) = f_{x}(Y)$
 $let $(g \cdot f) \vdash (f \cdot \overline{y}) = f_{x}(Y) = f_{x}(Y)$
 $let $(f \cdot Y) \lor (f \cdot \overline{y}) = f_{x}(Y) = f_{x}(Y)$
 $let $(f \cdot Y) \lor (f \cdot \overline{y}) = f_{x}(Y)$
 $let $(f \cdot Y) \lor (f \cdot \overline{y}) = f_{x}(Y)$
 $let $(f \cdot Y) \lor (f \cdot \overline{y}) = f_{x}(Y)$
 $let $(f \cdot Y) \lor (f \cdot \overline{y}) = f_{x}(Y)$
 $let $(f \cdot Y) \lor (f \cdot \overline{y}) = f_{x}(Y)$
 $let $(f \cdot Y) \lor (f \cdot \overline{y}) = f_{x}(Y)$
 $let (f \cdot Y) \lor (f \cdot \overline{y}) = f_{x}(Y)$
 $let $(f \cdot Y) \lor (f \cdot \overline{y}) = f_{x}(Y)$
 $let $(f \cdot Y) \lor (f \cdot \overline{y}) = f_{x}(Y)$
 $let $(f \cdot Y) \lor (f \cdot \overline{y}) = f_{x}(Y)$
 $let $(f \cdot Y) \lor (f \cdot \overline{y}) = f_{x}(Y)$
 $let $(f \cdot Y) \lor (f \cdot \overline{y}) = f_{x}(Y)$
 $let $(f \cdot Y) \lor (f \cdot \overline{y}) = f_{x}(Y)$
 $let $(f \cdot Y) \lor (f \cdot \overline{y}) = f_{x}(Y)$
 $let $(f \cdot Y) \lor (f \cdot \overline{y}) = f_{x}(Y)$
 $let $(f \cdot Y) \lor (f \cdot \overline{y}) = f_{x}(Y)$
 $let $(f \cdot Y) \lor (f \cdot \overline{y}) = f_{x}$$$$$$$$$$$$$$$$$$$$$$$$

let W be on evenly covered nbhd of
$$f(y)$$

and \widetilde{W} open set in \widetilde{X} s.t. $\widetilde{f}(y) \subset \widetilde{W} \subset U$
and $p|_{\widetilde{W}} : \widetilde{W} \to W$ homeomorphism (might need
and $p|_{\widetilde{W}} : \widetilde{W} \to W$ homeomorphism (might need
to shrink W)

Y locally path connected $\Rightarrow \exists V \text{ open in } Y \notin V \in f^{-}(w)$ and V path connected

now fix a path 8 from
$$y_0$$
 to y
for any $y' \in V$ let \mathcal{P} be a path y to y' in V
so $\mathcal{S} * \mathcal{P}$ is a path y_0 to y'
 $\therefore \tilde{f}(y') = \tilde{f}_0(\tilde{s} * \mathcal{P})(i)$
but if for is lift of for based at $\tilde{f}_0 \tilde{s}(i) = \tilde{f}(y)$
then $\tilde{f}_0(\tilde{s} * \mathcal{P})(i) = \tilde{f}_0 \mathcal{P}(i)$
and we know $\tilde{f}_0 \mathcal{P} = (\mathcal{P}|_{\widetilde{W}})^{-1} \tilde{f}_0 \mathcal{P}$
 $\therefore \tilde{f}(y') \in \tilde{W} \subset U$
 $1\mathcal{R}, V \subset \tilde{f}^{-1}(U)$

lemma 24: (\tilde{X}, ρ) a covering space of X let $\tilde{F}_i, \tilde{f}_2: Y \rightarrow \tilde{X}$ be two lifts of $f: Y \rightarrow X$ if Y is connected and \tilde{f}_i and \tilde{f}_2 agree at one point then $\tilde{f}_i = \tilde{f}_2$

Proof:

$$let A = \{y \in Y \text{ s.t. } \tilde{f}_{i}(y) = \tilde{f}_{i}(y)\}$$

$$A \neq \emptyset \text{ by assuption}$$
if $y \in A$ then let V be an evenly covered nbbd of $f(y)$
let \tilde{U} be an open set in \tilde{X} st. $\tilde{f}_{i}(y) = \tilde{f}_{i}(y) \in \tilde{U}$
and $p|_{U}: \tilde{U} \to U$ is a homeomorphism
since f is contribuous \exists open $nbbd V$ of γ st. $f(v) \in U$
now $\tilde{f}_{i}|_{v} = [p|_{U}]^{-i}of|_{v} = \tilde{f}_{z}|_{v}$
 $\therefore V \subset A$ and A open
if $y \notin A$, then with U as above, $\exists \tilde{U}_{i}, \tilde{U}_{v}$ open in \tilde{X} st.
 $\tilde{f}_{i}(y) \subset \tilde{U}_{i}$ and $p|_{U}: \tilde{U}_{i} \to U$ a homeomorphism
 $clearly \tilde{U}_{i} \cap \tilde{U}_{z} = \emptyset$
 $\therefore \text{ if } V$ is as above, then $\tilde{f}_{i}(U) \subset \tilde{U}_{i}$
so $X - A$ open
 \therefore by connectedness of $X, A = X$
Two covering spaces $(\tilde{X}_{z}, \rho_{z}), t = u_{z}$, of X are isomorphic if $\exists a$
homeomorphism $h: \tilde{X}_{i} \to \tilde{X}_{z}$ st. $p_{z} \circ h = P$, $\tilde{X}_{i} \to \tilde{X}_{z}$
note: this is an equivalence relation
 X

Suppose
$$(\tilde{X}_{2}, \rho_{1}), 2=1, 2, are path connected, locally path connectedcovering spaces of X, $x_{o} \in X, \tilde{x}_{i} \in \rho_{1}^{-1}(x_{o})$
a) if $(\rho_{1})_{*}(\pi_{i}(\tilde{X}, \tilde{x}_{i})) \in (\rho_{c})_{*}(\pi_{i}(\tilde{X}_{2}, \tilde{x}_{i}))$
then ρ_{i} lifts to a covering space $p: \tilde{X}_{1} \rightarrow \tilde{X}_{2}$ taking \tilde{x}_{i} to \tilde{x}_{2} .
b) $(\tilde{X}_{i}, \tilde{x}_{i})$ and $(\tilde{X}_{ij}, \tilde{x}_{2})$ are isomorphic covering spaces of X
by an isomorphism taking \tilde{x}_{i} to \tilde{x}_{i}
 $(\rho_{i})_{*}(\pi_{i}(\tilde{X}, \tilde{x}_{i})) = (\rho_{2})_{*}(\pi_{i}(\tilde{X}_{2}, \tilde{x}_{2}))$$$

c)
$$(\widetilde{X}_{1,p_{1}})$$
 and $(\widetilde{X}_{2,p_{2}})$ are isomorphic covering spaces of X
 \Rightarrow
 $(\rho_{1})_{*}(\pi_{1}(\widetilde{X},\mathfrak{r}_{1}))$ is conjugate to $(\rho_{2})_{*}(\pi_{1}(\widetilde{X}_{2},\mathfrak{r}_{2}))$

Proof: a) by Th^m 23 we get a lift
$$p: \tilde{X}_{1} \rightarrow \tilde{X}_{2}$$
 taking \tilde{x}_{1} to \tilde{X}_{1}
we now show $p \neq covering$ map
 $\tilde{X}_{1} = \int_{0}^{p} \tilde{X}_{2}$ is \tilde{X}_{2} let U be a non-bod of $p_{1}(x)$ in X that is
 $\tilde{X}_{2} = p_{1}$ evenly covered by p_{1} and p_{2}
so $\exists a$ unique \tilde{U} in \tilde{X}_{2} st. $x \in \tilde{U}$ and
 $p_{2}|_{\tilde{U}}: \tilde{U} \rightarrow U$ is a homeomorphism
let $p^{-1}(\tilde{U}) = \bigcup_{x} \tilde{U}_{x}$, clearly $\bigcup_{x} \subset \tilde{p}_{1}^{-1}(U)$ so $p_{1}|_{\tilde{U}_{x}}: \tilde{U}_{x} \rightarrow U$ a homeo.
so $p|_{U_{k}} = p_{2}^{-1}|_{U_{k}} \circ p_{1}|_{U_{k}}$ is a homeomorphism $\widetilde{U}_{x} \rightarrow \tilde{U}$
 \therefore each point in p has an evenly covered n bhd.
b) (\Rightarrow) clear
(\Leftarrow) let $\tilde{p}_{1}: \tilde{X}_{1} \rightarrow \tilde{X}_{2}$ be left of p_{1} $\tilde{X}_{2} = \tilde{K}_{2} \rightarrow \tilde{X}_{1}$ be lift of p_{2} $\tilde{X}_{2} \rightarrow \tilde{X}_{1}$ be lift of p_{2} $\tilde{X}_{2} \rightarrow \tilde{X}_{2}$ be lift of p_{3} $\tilde{X}_{3} \rightarrow \tilde{U}$

<u>note</u>: $\tilde{p}_1 \circ \tilde{p}_2 \colon \tilde{X}_2 \to \tilde{X}_2$ takes \tilde{X}_1 to \tilde{X}_2 and is a lift of p_2 to \tilde{X}_2 $\tilde{p}_1 \circ \tilde{p}_2 \colon \tilde{X}_2 \to \tilde{X}_2$ $\tilde{p}_1 \circ \tilde{p}_2 \colon \tilde{X}_2 \to \tilde{X}_2$ $\tilde{p}_1 \circ \tilde{p}_2 \coloneqq \tilde{X}_2 \to \tilde{X}_2$ but so is $id_{\tilde{X}_1} \coloneqq \tilde{X}_2 \to \tilde{X}_2$: by lemma 24, $\tilde{p}_1 \circ \tilde{p}_2 = id_{\tilde{X}_2}$

similarly $\tilde{p}_{i} \circ \tilde{p}_{i} = idg_{i}$:. \tilde{p}_{i} and \tilde{p}_{i} are homeomorphisms.

c) clear from lemma 22 and b)

A space X is semilocally simply connected if each point
$$\pi \in X$$

has a neighborhard U st. $\pi_{1}(U,x) \rightarrow \pi(X,\pi)$ is trivial
example:
 $X = \bigoplus_{n=1}^{\infty} = \bigcup_{n=1}^{\infty} S_{n}^{(L,n)}$
Mercle of radius to about $(t, 0)$
is not semi-locally simply connected
but (W-complexes and manifolds are
The 26:
let X be a path connected,
locally path connected space
 $\pi_{0} \in X$. Then there is a one-to-one correspondence
(base point preserving isomorphism
(classes of coverings ($\overline{K}, p, \overline{X}$) of (X, x)) \longleftrightarrow ($\overline{X}, p, \overline{x}, \overline{X}$)
 $(\overline{X}, p, \overline{x}) \longmapsto p_{n}(\pi(\overline{X}, \overline{X})) \cong \pi(\overline{X}, \overline{x})$
 $(\overline{X}, p, \overline{x}) \longmapsto p_{n}(\pi(\overline{X}, \overline{X})) \cong \pi(\overline{X}, \overline{x})$
 $(\overline{X}, p, \overline{x}) \longmapsto (\overline{X}, p, \overline{x}, \overline{X})$
 $(\overline{X}, p, \overline{x}) \longmapsto (\overline{X}, p, \overline{x}, \overline{X})$
 $(\overline{X}, p, \overline{x}) \mapsto (\overline{X}, p, \overline{x}, \overline{X})$ is also a cover of $(\overline{X}, p_{n}, \overline{x})$
 $(\overline{X}, p, \overline{x}) \mapsto \overline{T} \oplus (\overline{X}, p, \overline{x}, \overline{X})$ is a cover of degree n
in addition, we have the one-to-one correspondence
(isomorphism classes of) \longleftrightarrow (conjugacy classes of)
(coverings ($\overline{X}, p)$ of X) \bigoplus (conjugacy classes of)
(coverings ($\overline{X}, p)$ of X)
This is an amaging thth! There is a "lattice" of subgroups of $\pi(X, x)$
 $we will see there is more to this correspondence(ater$

The unique simply connected cover of X is called the <u>universal caer</u>

Proof: note 1) and 2) follow from Cor 25 once we have the one-to-one corresp. 3) follows from lemma 21 also, once we have a well-defined map $H < T_{I}(X, x_{\bullet}) \mapsto (X_{H}, \rho_{H}, x_{H})$ such that $\rho_*(\pi, (\widehat{X}_{H}, \widehat{x}_{H})) = H$ the fact that the 1st correspondance is one-to-one follows from (or 25, 6) and the 2nd correspondance from (or 25, c) so we are left to construct $(X_{H, PH, \widetilde{X}_{H}})$ given $H < \pi(X, \kappa)$ to this end we call two paths $\mathcal{F}, \eta : [o, 1] \rightarrow X$ based at x_{o} , <u>H</u>-equivalent if 1) & (1) = 7(1) and $2) \int \chi \times \overline{\eta} \int \epsilon H$ exercise: 1) This is an equivalence relation 2) if H= {e} then this is just homotopy relend points let (8) denote the equivalence class of 8 Set $\widetilde{X}_{\mu} = \{\langle v \rangle \mid v \text{ a path in } X \text{ based at } x_{\alpha} \}$ (this is just a set, but we put a topology on it later) $\rho_{\mu} \colon \widetilde{X}_{\mu} \to X : \langle \mathbf{Y} \rangle \longmapsto \mathcal{Y}(\iota)$ $\widetilde{\chi}_{H} = \langle e_{\chi_{h}} \rangle$

<u>note</u>: p_H is onto since any point x & X is connected to x_o by a path We want to define a topology on \widetilde{X}_{H} , but first we need to undestand something about the topology on X

Claud:
$$\mathcal{U} = \{ U \subset X : U \text{ spen, parth-connected and } \pi(U_{H}) \rightarrow \pi(X_{H}) \text{ trivial, some } x \in U \}$$

is a basis for the topology on X
(recall, a collection of open sets in X is a basis
for the topology on X if $\forall x \in X$ and open set U with $x \in U$
 $\exists \text{ an open set } 0$ in the collection $st x \in O \subset U$.
 πe any open set is a union of sets in the collection)
 $Pt: \text{ note: if } \pi(U_{X}) \rightarrow \pi(X_{X}) \text{ trivial}$
 $\forall \text{ then } \pi(U_{X}) \rightarrow \pi(X_{X}) \text{ trivial}$
 $\forall \text{ then } \pi(U_{X}) \rightarrow \pi(X_{X}) \text{ trivial}$
 $\pi(U_{X}) \rightarrow \pi(X_{X})$
 $\pi(U_{X}) \rightarrow \pi(X_{X})$
 $\pi(U_{X}) \rightarrow \pi(X_{X})$
 $also, if U \in U$ and $V \in U$ is open and path connected
then $\pi(V_{X}) \rightarrow \pi(V_{X}) \rightarrow \pi(X_{X})$
 $\pi(V_{X}) \rightarrow \pi(X_{X})$
 $\pi(V_{X}) \rightarrow \pi(X_{X})$
 $\pi(V_{X}) \rightarrow \pi(X_{X}) \text{ trivial}$
 $\therefore V \in U$
 $now X semilocally simply connected says for any $x \in X$
and open set U containing x , $\exists open set V st.$
 $\pi \in V$ and $\pi(V_{X}) \rightarrow \pi(X_{X})$ trivial
so $(U \cap V \text{ open set containing x and
 $\pi(U \cap V_{Y}) \rightarrow \pi(X_{X}) \text{ trivial}$
 $X | \text{ locally path connected} $\exists \text{ open W st } x \in W \subset U \cap V \text{ and}$
 $W \text{ is path connected}$
from above $\pi(W_{X}) \rightarrow \pi(X_{X}) \text{ trivial}$
so $W \in U$ and U is a basis for topology on X.
for each $U \in U$ and X a poth x_{x} to a point in U
 $\text{set } U_{X} = \{\langle X = \eta_{Y} \} \mid \eta = \text{ path in U st } \eta(0) = x(u_{X})$
 $note U_{X} \subset X_{H}$$$$

$$\begin{array}{c} \text{now if } (S > \in V_{13}, V_{13}, \text{then } V_{13} = V_{13} \text{ and } V_{13} = V_{13} \\ \text{ so if } W \in U \text{ s.t. } W \subset U \land V_{13} = U_{13}, \land V_{13}, \\ \text{ then } W_{13} \leq U_{13}, \land V_{13} \leq U_{13}, \land V_{13}, \\ \text{ clearly } \tilde{X}_{H} \text{ is a union of all } U_{13} \text{ 's} \\ \text{ so we have a basis for a topology on } \tilde{X}_{H} \\ \text{ cleans: with above topology } (\tilde{X}_{H}, p_{H}) \text{ is a covering space of X} \\ \hline P_{H} & \text{ otherwise topology } (\tilde{X}_{H}, p_{H}) \text{ is a covering space of X} \\ \hline P_{H} & \text{ is contributors since any basic open set V < U \\ \text{ and ony path } S \text{ from } x_{t} \text{ to pt' in V} \\ (P_{H} |_{U_{13}})^{-1}(V) = V_{13} \\ \text{ is contributors since any basic open set V < U \\ \text{ and ony path } S \text{ from } x_{t} \text{ to pt' in V} \\ (P_{H} |_{U_{13}})^{-1}(V) = V_{13} \\ \text{ the above argument also shows that basic open sets in U \\ \therefore P_{H} |_{U_{13}} \text{ a homeomorphism} \\ \text{ note this implies P is continuous \\ now if $x \in X$, then let $U \in U$ be a set containing x \\ p^{-1}(U) = Union of U_{13} , as x rows through all paths x_{0} to pt in U \\ and $p|_{U_{13}} \oplus U_{13} \to V \\ \text{ homeomorphism} \\ T_{e}: [o_{1}] \rightarrow X \\ \text{ sinter its} \\ \text{ note: } $Y: [o_{1}] \rightarrow X_{H} \\ \text{ is a logs since $T(b) = (e_{n}) \\ x \mapsto (X_{e}) \\ \text{ and $Y(i) = (Y) \in (X_{e}) \\ x \mapsto (X_{e}) \\ \text{ and $Y(i) = (Y) = (Y_{e}) \\ x \mapsto (Y_{e}) \\ \text{ and $Y(i) = (Y) \in (Y_{e}) \\ x \mapsto (Y_{e}) \\ x \mapsto$$$

Moreover
$$\rho_{H} \circ \tilde{\delta} = \delta$$

 $\therefore [v] = image(\rho_{H})_{*}$
now if $[v] \notin H$, then the path
 $\tilde{\delta} : \{o,i\} \rightarrow \tilde{X}_{H}$
 $t \mapsto \langle v_{t} \rangle$
is clearly the lift of δ based at \tilde{x}_{H}
and $\tilde{\delta}(i) = \langle \delta \rangle$
but $\langle \delta \rangle \neq \langle e_{x_{0}} \rangle = \tilde{x}_{H}$ since $[v] \notin H$
 $\therefore [v] \notin image(\rho_{H})_{*}$ by lemma 21, 2)

the operation of composition

examples: 1) $s' \longrightarrow \tilde{x}_{i}$ $p_{h}: s' \rightarrow s'$ is a covering transformation $p_{h}: s' \rightarrow s'$ is a covering transformation the solution transformation transformation the solution transformation trans

2)

If we lift b to
$$\tilde{x}_3$$
 then it is a loop but
if we lift to \tilde{x}_2 or \tilde{x}_1 it is a path
so no dech trans. taking \tilde{x}_3 to \tilde{x}_1 or \tilde{x}_2
similarly can't send \tilde{x}_2 to \tilde{x}_1 or \tilde{x}_3

So any dech trans fixes all
$$\tilde{x}_i :: is identity$$

:: $G(\tilde{x}) = \{1\}$

A covering space $p: \tilde{X} \to X$ is called <u>normal</u> if $\forall x \in X$ and $\tilde{x}, \tilde{x}' \in p^{-1}(x)$ $\exists \phi \in G(\tilde{X}) \quad s.t. \quad \phi(\tilde{x}) = \tilde{X}'$

so example 1) is normal but example 2) is not.

$$Th \stackrel{m}{\longrightarrow} 27:$$

$$let \ p:(\tilde{\chi}, \tilde{\kappa}) \rightarrow (\chi, \kappa_{o}) \ be \ a \ path \ connected, \ locally \ path \ connected \ covering \ space \ of \ a \ space \ \chi$$

$$let \ H = \rho_{\star} \left(T_{i} \left(\tilde{\chi}, \tilde{\kappa}_{o} \right) \right) < T_{i}(\chi, \kappa_{o}), \ then$$

$$i) \left(\tilde{\chi}, \rho \right) \ is \ normal \ \Leftrightarrow H \ is \ a \ normal \ subgroup \ of \ T_{i}(\chi, \kappa_{o})$$

$$z) \ G(\tilde{\chi}) \cong \frac{N(H)}{H} \qquad where \ N(H) \ is \ the \ "normalizer" \ of \ H, i.e. \ largest \ subgroup \ of \ T_{i}(\chi, \kappa_{o}) \ containing \ H \ as \ a \ normal \ subgroup$$

Remark: If
$$p: \tilde{X} \to X$$
 normal, then $G(\tilde{X}) = \pi_i(X, \kappa_0) / \rho_*(\pi_i(\tilde{X}, \kappa_0))$
in particular, for the universal cover $p: \tilde{X} \to X$
 $G(\tilde{X}) = \pi_i(X, \kappa_0)$

let h be a path in
$$\tilde{X}$$
 from \tilde{X} to \tilde{Y} , and $\tilde{Y} = poh$
by lemma 22, $[Y]H_{i}[Y]^{-1}=H$
 $\therefore H = H_{i}$ since H is normal
 $X = p_{i}(T_{i}(\tilde{X},\tilde{x}_{i})) = p_{i}(T_{i}(\tilde{X},\tilde{x}_{i}))$
 \therefore by $Th^{2}23 \exists lifts of p to p_{i} and p_{i}
 $(\tilde{X},\tilde{X}) \xrightarrow{\Phi} (\tilde{X},\tilde{X}) \xrightarrow{\Phi} (\tilde{X},\tilde{X})$
 $p \to \int p^{\circ} e^{-p} (X,\tilde{X})$
 $p \to p^{\circ} (X,\tilde{X})$
 $p \to p$$

and from above
$$[v] H[v]^{-1} = H$$
 so $[v] \in N(H)$
and $\overline{f}([v]) = \Phi$
Claim: ker $\overline{\Phi} = H$
if $[v] \in H$, then $\overline{s}(l) = \overline{s}$, so $\overline{f}([v]) = id_{\overline{s}}$
 $\therefore H \in ker \overline{\Phi}$
if $[v] \in ker \overline{\Phi}$, then $\overline{f}(l) = \overline{s}$, and so \overline{s} a loop
 $\therefore [v] \in H$
a group action on a topological space X is a pair (G, p) where
G is a group, and
 $p: G \rightarrow Homeo(X)$ is a homomorphism
 $group of homeomorphisms$
if G acts on X then we can form the quotient space $\frac{x}{G}$
where two points π, x_{∞} are identified if $\exists g \in G$ st. $p(g)(x) = x_{\infty}$
this is called the orbit space
 $Th^{\frac{m}{2}}28:$
Let G be a group action on X such that
 $\frac{w}{\sqrt{x} \in X, \exists a hind U of x xo that $g, U ng_{\infty} U \neq \emptyset \Rightarrow g, =g_{\infty}$
then i) $p: X \rightarrow \frac{x}{G}$ is a normal covering space
 $2) G \equiv G(x + \frac{x}{G})$ if X is path connected
 $3) G \equiv \pi(\frac{x}{G})/g_{\infty}(\pi_{1}(x))$ if X is path connected.$

<u>exercise</u>: if G is finite and G acts <u>freely</u> on X (ne. has no fixed points) then the action on X satisfies *

