E Covering Spaces
a covering space of a space X is a pair (\tilde{X}, p) where
\tilde{X} is a space and
$p: \tilde{x} \rightarrow X$ is a continuous map such that every point $x \in X$ has an evenly covered neighborhood
an open set U is called evenly covered if $P^{-1}(U)=$ disjoint union of open sets $\left\{U_{\alpha}\right\}$ in \tilde{x} such that $p l_{U_{\alpha}}: U_{\alpha} \rightarrow U$ is a homeomorphism $\forall \alpha$
examples:

1) a homeomorphism $p: \tilde{X} \rightarrow X$ is a covering space
2) $p: \mathbb{R} \rightarrow S^{\prime}: t \mapsto(\cos 2 \pi t, \sin 2 \pi t)$ is a covering space
since we showed $A=S^{\prime}-\{(1,0)\}$ and $B=S^{\prime}-\{(-1,0)\}$ are evenly covered
exercise: if (\tilde{X}, ρ) is a covering space of X and

$$
(\tilde{y}, q) " \quad " \quad \text { " } Y
$$

then $(\tilde{X} \times \tilde{Y}, \rho \times q)$ is a covering space of $X \times Y$
So $p: \mathbb{R}^{2} \rightarrow T^{2}:(x, y) \rightarrow((\cos 2 \pi x, \sin 2 \pi x),(\cos 2 \pi y, \sin 2 \pi y))$
is a covering space of T^{2}

3) $p_{n}: S^{\prime} \rightarrow S^{\prime}: \theta \mapsto n \theta$
 wrap $S^{\prime} n$ times around S^{\prime}

4)
$X=\Omega$ wedge of 2 circles

note: a evenly covered b evenly covered x_{0} has ubhd x_{0} evenly covered by $\int_{x_{1}}^{x_{x_{3}}} x_{1} x$
exercise: explicitly write out p
similarly another cover of X is

5) $\mathbb{R} P^{2}=S^{2} / \sim$ points in $S^{2} \sim$ to antipode

similarly $S^{n} \rightarrow \mathbb{R} P^{n}$ a covering map
lemma li:
let (\tilde{x}, ρ) be a covering space of a connected space X
the cardinality $\left|\rho^{-1}(x)\right|$ is independent of X
$\left|\rho^{-1}(x)\right|$ is called the degree of the covering space
Proof: for some $x_{0} \in X$, let $k=\left|\rho^{-1}\left(x_{0}\right)\right|$

$$
\text { let } A=\left\{x \in X:\left|\rho^{-1}(x)\right|=k\right\}
$$

if $x \in A$ then let U be a evenly covered ubhd of x

$$
\begin{aligned}
& \text { so } \rho^{-1}(U)=\left\{u_{1}, \ldots u_{k}\right\} \\
& \therefore\left|p^{-1}\left(x^{\prime}\right)\right|=k \quad \forall x^{\prime} \in U \\
& \therefore U \subset A \text { and } A \text { open }
\end{aligned}
$$

similarly $X-A$ open so A closed
$\therefore X=A$ since X connected
If (\tilde{X}, ρ) a covering space of X
$f: Y \rightarrow X$ a continuous map
then $\tilde{f}: \varphi \rightarrow \tilde{X}$ a lift of f if $p \circ \tilde{f}=f$
if $f\left(y_{0}\right)=x_{0}$ and $\tilde{x}_{0} \in \tilde{X}$ s.t. $p\left(\tilde{x}_{0}\right)=x_{0}$, then \tilde{f} is a lift of f based at \tilde{x}_{0} if $\tilde{f}\left(y_{0}\right)=\widetilde{x}_{0}$
Lemma 20:
(\tilde{X}, ρ) a covering space of $X, x_{0} \in X$ and $\tilde{x}_{0} \in p^{-1}\left(x_{0}\right)$
b) if $H: Y \times\{0,1] \rightarrow X$ is a homotopy with $h_{0}(y)=H(y, 0)$ lifting and $\tilde{h}_{0}: Y \rightarrow \tilde{X}$ a lift of h_{0} then \exists a unique homotopy $\tilde{H}: Y \times\{0,1] \rightarrow \tilde{X}$ st. $\tilde{h}_{0}(y)=\tilde{H}(y, 0)$

Proof: same as proof of lemma ll (exercise)
lemma 21:
If (\tilde{x}, ρ) is a path connected covering space of X and $x_{0} \in X, \tilde{x}_{0} \in \rho^{-1}\left(x_{0}\right)$
then $p_{*}: \pi_{l}\left(\tilde{x}, \tilde{x}_{0}\right) \rightarrow \pi_{1}\left(X, x_{0}\right)$
(1) is injective
(2) its manage is the set of loops in $\pi_{l}\left(x, x_{0}\right)$ that when lifted to paths in \tilde{X} based at x_{0}, they are loops
(3) $\left[\pi_{1}\left(x, x_{0}\right): \pi_{1}\left(\tilde{x}, x_{0}\right)\right]=$ degree of (\tilde{x}, ρ)
examples:

1) $p: \mathbb{R} \rightarrow s^{\prime}$
$p_{*}: \pi_{i}(\mathbb{R}) \rightarrow \pi_{i}\left(s^{\prime}\right) \quad$ no nontrivial loop in s^{\prime} lift to a loop in \mathbb{R} "̈ $\quad \stackrel{s \prime \prime}{Z} \quad$ degree $=\infty=[\mathbb{Z}:\{0\}]$
2) $p_{n}: s^{\prime} \rightarrow s^{\prime}$

$$
\begin{array}{rlrl}
\left(p_{n}\right)_{x}: \pi_{1}\left(s^{\prime}\right) & \rightarrow \pi_{1}\left(s^{\prime}\right) & \text { so } \operatorname{im}\left(p_{n}\right)_{x}=n \mathbb{Z} \\
& 115 & 1 / s \\
\mathbb{Z} & \longrightarrow \mathbb{Z} & & \text { degree e } p_{n}=n=[\mathbb{Z}: n \mathbb{Z}] \\
1 & \longrightarrow n & &
\end{array}
$$

any loop in it that wraps a multiple of 3 times lifts to a loop

Proof: 1) Suppose $p_{*}([\gamma])=[e]$
lemma 20,6$) \Rightarrow \exists$ homotopy $\underset{x_{0}}{\tilde{\tilde{x}_{0}} / \widetilde{x}_{0}} \stackrel{\tilde{\tilde{x}_{0}}}{ } \xrightarrow{\tilde{H}} X$
note: $\tilde{F}(0, t)$ lift of $H(0, t)=x_{0}$ so constantly \widetilde{x}_{0}
similarly $\tilde{H}(1, t)=\tilde{x}_{0}=\tilde{H}(5,1)$
so $\gamma \sim e_{\tilde{x}_{0}}$ by \tilde{H} and $[\gamma]=[e]$,
(2) clearly if $[\gamma] \in \pi_{1}\left(x, x_{0}\right)$ and γ lift to a loop $\tilde{\gamma}$ based at $\tilde{\gamma_{0}}$
then $P_{x}([\gamma])=\gamma$
and if $[\gamma]=p_{x}([\eta])$, then $\gamma \sim p_{0} \eta \therefore$ by lemma 20,6)
the lift $\tilde{\gamma}$ of γ based at \tilde{x}_{0} is homotopic to η (rel end pts)
so $\tilde{\gamma}$ a loop
(3) let $H=\rho_{*}\left(\pi /\left(\tilde{x}, x_{0}\right)\right)$
\widetilde{x} If $[\gamma] \in \pi_{c}\left(x, x_{0}\right)$ and $[\delta] \in H$, then note
if $\tilde{\gamma}$ a lift of γ based at \tilde{x}_{0}

$$
\widetilde{\delta * \gamma} " \quad " \delta * \gamma \text { " } " \tilde{x}_{0}
$$

then $\tilde{\gamma}(1)=\widetilde{\delta} \times \gamma(1)$ since $\tilde{\delta}$ is a loop (and $\widetilde{\delta * \gamma}=\tilde{\delta} \times \tilde{\gamma}$)
\therefore we get a map
$\phi:\{$ right cosets of $H\} \longrightarrow \rho^{-1}\left(x_{0}\right)$

$$
H[\gamma] \longmapsto \tilde{\gamma}(1)
$$

that is well-defined
if $\tilde{x}_{1} \in \rho^{-1}\left(x_{0}\right)$ then let $\tilde{\gamma}$ be a path \tilde{x}_{0} to \tilde{x}_{1} $\gamma=p \circ \tilde{\gamma}$ is a loop ii X based at x_{0}
and $\phi(H[\gamma])=\tilde{\gamma}(1)=\tilde{x}_{1}$
so ϕ onto
now suppose $\phi(H[\gamma])=\phi(H[\eta])$
so if $\tilde{\gamma}, \tilde{\eta}$ are lifts of γ, η based at \tilde{x}_{0}
then $\tilde{\gamma}(1)=\tilde{\eta}(1)$
$\therefore \tilde{\gamma} * \overline{\tilde{\eta}}$ is a loop in \tilde{x} and so $\rho_{*}([\tilde{\gamma} * \overline{\tilde{\eta}}]) \in H$
but $\operatorname{Pr}([\tilde{\gamma} \times \bar{\eta}])=[\gamma] \times[y]^{-1} \Rightarrow H[\gamma]=H[\eta]$
le. ϕ is one-to-one
lemma 22:
If (\tilde{X}, ρ) is a path connected covering space of X and $x_{0} \in X$
then

$$
\left\{p_{x}\left(\pi_{1}(\tilde{x}, \tilde{x})\right)\right\}_{\tilde{x} \in \rho^{-1}\left(x_{0}\right)}
$$

is a conjugacy class of subgroups of $\pi_{l}\left(x, x_{0}\right)$
Proof: let $\tilde{x}_{0}, \tilde{x}_{1} \in \rho^{-1}\left(x_{0}\right)$ and set $H_{i}=\rho_{*}\left(\pi_{l}\left(\tilde{x}, x_{i}\right)\right)$
let $h:[0,1] \rightarrow \tilde{X}$ be a path \tilde{x}_{0} to \tilde{x}_{1}
then $\gamma=$ ooh is a loop in X
if $[\eta] \in H_{1}$ then η lifts to a loop $\tilde{\eta}$
based at x_{1} (by lemma 21)
so $h * \tilde{\eta} * \bar{h}$ is a loop based at \tilde{x}_{0}

\downarrow

$$
\begin{aligned}
& \therefore \quad[\gamma] \cdot[y] \cdot[\gamma]^{-1}=[(\rho 0 h) *(\rho \cdot \tilde{y}) *(\overline{(\rho o h})] \\
&=p_{*}[h \times \tilde{y} * \bar{h}] \in H_{0} \\
& \therefore \quad[\gamma] H_{1}[\gamma]^{-1} \subseteq H_{0}
\end{aligned}
$$

similarly $[\gamma]^{-1} H_{0}[\gamma] \leqslant H_{1} \quad \therefore \quad H_{0}=[\gamma] H_{1}[\gamma]^{-1}$
now if H is conjugate to H_{0}, then $\exists[\alpha] \in \pi_{1}\left(x, x_{0}\right)$ st.

$$
[\alpha] H[\alpha]^{-1}=H_{0}
$$

If $[\alpha] \in H_{0}$ then $H=H_{0}$ and done
if $[\alpha] \notin H_{0}$ then α lifts to a path $\tilde{\alpha}$ starting at \tilde{x}_{0}
let $\tilde{x}_{1}=\tilde{\alpha}(1)$
set $H_{1}=p_{x}\left(\pi_{l}(\tilde{x}, \tilde{x}, \tilde{x})\right)$
from above $H_{0}=[\alpha] H_{1}[\alpha]^{-1} \quad \therefore H=H_{1}$

Th쓸 23:
let $\left(\tilde{X}_{1} \rho\right)$ be a covering space of $X, \tilde{x}_{0} \in \tilde{X}$ and $x_{0}=\rho\left(\tilde{x}_{0}\right)$ suppose $f: Y \rightarrow X$ is a continuous map with Y path connected and locally path connected

$$
y_{0} \in Y \quad s x . f\left(y_{0}\right)=x_{0}
$$

Then \exists a lift $\tilde{f}: Y \rightarrow \tilde{x}(\rho \circ \tilde{f}=f)$ st. $\tilde{f}\left(y_{0}\right)=\tilde{x}_{0}$

$$
\begin{aligned}
f_{*}\left(\pi_{1}\left(Y, y_{0}\right)\right) & \Leftrightarrow p_{*}\left(\pi\left(\tilde{x}, \tilde{x}_{0}\right)\right)
\end{aligned}
$$

(and if lift exists it is unique, see lemma 24 below)
Y is locally path connected if $\forall y \in Y$ and open sets U containing y, \exists an open set V sf. $y \in V \subset U$ and V is path connected
example: the comb space $C=\left(\left\{\frac{1}{n}\right\} \times[0,1)\right) \cup(\{00 \times[0,1]) \cup([0,1] \times\{0])$ is path connected but not locally path connected

Proof: $\Leftrightarrow \quad f_{*}\left(\pi,\left(y, y_{0}\right)\right)=\rho_{*}\left(\tilde{f}_{*}\left(\pi_{l}\left(Y, y_{0}\right)\right) \subseteq \rho_{*}\left(\pi_{l}\left(\widetilde{x}, \tilde{x}_{0}\right)\right)\right.$,
\Leftrightarrow for $y \in Y$ let γ be a path y to to y
so for is a path in X based at x_{0}
$\exists!$ lift $\tilde{f} \cdot \bar{\gamma}:[0,1] \rightarrow \tilde{x}$ based at \tilde{x}_{0}
define: $\tilde{f}(y)=\widetilde{f \circ \gamma}(1)$ note: if well-defined, then clearly po $\tilde{f}=f$ and $\tilde{f}\left(y_{0}\right)=\tilde{x}_{0}$
Clam: \tilde{f} well-detived
let γ, η be two path y_{0} to y

$\gamma \times \bar{\eta}$ is a loop in Y based at y_{0}
so $f_{y}\left(\left[\gamma_{x} \bar{y}\right]\right) \in \rho_{*}(\pi(\tilde{x}, \tilde{f}))$
ie. $(f \circ \gamma) \times(f \circ \bar{y})$ lifts to a loop in \tilde{X} based at \tilde{x}_{0}
but $\widetilde{(f \circ \gamma) *(f \circ \bar{y})}=\underset{\rho}{\tilde{f_{0}} \gamma} * \underbrace{\tilde{f \circ} \bar{y}}_{\uparrow}$

note: 1) $\widetilde{f_{0} \tilde{y}}(1)=\widetilde{x}_{0}$
2) $\widetilde{f_{\circ} \eta}=\overline{f_{0} \bar{y}}$ so $\widetilde{f_{0} \eta}(1)=\widetilde{f_{\circ} \gamma}(1)$ and \widetilde{F} is well-delimed!

Claim: \tilde{f} is continuous
given an open set $U \subset \tilde{X}$ we show $\forall y \in \tilde{f}^{-1}(U), \exists$ an open set V
 st. $y \in V<f^{-1}(u)$

idea is on small

$$
\text { nh of } y, \tilde{f} \text { is }
$$

$$
f \circ(p l)^{-1}
$$

let W be an evenly covered nhl of $f(y)$
and \widetilde{w} open set in \tilde{X} s.t $f(y) \subset \tilde{w} \subset U$
and $\left.P\right|_{\tilde{W}}: \widetilde{W} \rightarrow W$ homeomorphism (might need to shrink w)
Y locally path connected $\Rightarrow \exists V$ open in Y st. $y \in V \subset f^{-1}(w)$ and V path connected
now fix a path γ from y_{0} to y
for any $y^{\prime} \in V$ let η be a path y to y^{\prime} in V
so $\gamma * \eta$ is a path y_{0} to y^{\prime}

$$
\therefore \tilde{f}\left(y^{\prime}\right)=\widetilde{f_{0}(\gamma \times \eta)}(1)
$$

but if $\tilde{f o \eta}$ is lift of for based at $\tilde{f} \circ(1)=\tilde{f}(y)$
then $\tilde{f}_{\circ}(\gamma \times \eta)(1)=\tilde{f}_{\circ} \eta(1)$
and we know $\widetilde{f \circ \eta}=\underbrace{\left(\left.p\right|_{\tilde{W}}\right)^{-1} \circ f \circ \eta}_{\text {since this is a loft }}$

$$
\begin{aligned}
& \therefore \tilde{f}\left(y^{\prime}\right) \in \tilde{w} c U \\
& \text { ie. } V \subset \tilde{f}^{-1}(U)
\end{aligned}
$$ and lift is unique!

lemma 24: \qquad
(\tilde{X}, ρ) a covering space of X
let $\tilde{f}_{1}, \tilde{f}_{2}: Y \rightarrow \tilde{X}$ be two lifts of $f: Y \rightarrow X$
if Y is connected and \tilde{f}_{1} and \tilde{f}_{2} agree at one poivit then $\tilde{f}_{1}=\tilde{f}_{2}$

Proof:
let $A=\left\{y \in Y\right.$ s.t. $\left.\tilde{f}_{1}(y)=\tilde{f}_{2}(y)\right\}$
$A \neq \varnothing$ by assuption
if $y \in A$ then let U be an evenly covered null of $f(y)$
let \tilde{U} be an open set in \widetilde{X} st. $\tilde{f}_{1}(y)=\tilde{f_{1}}(y) \in \widetilde{U}$ and $\rho l_{\tilde{U}}: \tilde{U} \rightarrow U$ is a homeomorphism
since f is contriuous \exists open nbhd V of y st. $f(v)<U$
now $\tilde{f}_{1} l_{V}=\left.\left(p l_{\tilde{O}}\right)^{-1} \circ f\right|_{V}=\left.\tilde{f}_{2}\right|_{V}$
$\therefore V \subset A$ and A open
if $y \notin A$, then with U as above, $\exists \tilde{U}_{1}, \tilde{V}_{2}$ open in \tilde{X} st.
$\tilde{F}_{i}(y) \subset \tilde{U}_{i}$ and $P_{\tilde{U}_{i}}: \tilde{U}_{i} \rightarrow U$ a homeomorphism
clearly $\tilde{U}_{1} \cap \widetilde{U}_{2}=\varnothing$
\therefore if V is as above, then $\tilde{f}_{i}(v) \subset \tilde{U}_{1}$
so $X-A$ open
\therefore by connectedness of $x, A=x$
Two covering spaces $\left(\tilde{x}_{2}, p_{1}\right), 1=1,2$, of X are isomorphic if \exists a homeomorphism $h: \widetilde{X}_{1} \rightarrow \tilde{X}_{2}$ st $p_{2} \circ h=p_{1}$
note: this is an equivalence relation

$$
\begin{aligned}
& \tilde{X}_{1} \xrightarrow{h} \tilde{x}_{2} \\
& \rho_{1}{\underset{X}{x}}_{d p_{2}}
\end{aligned}
$$

Cor 25:
Suppose ($\left.\tilde{x}_{2}, p_{1}\right), 1=1,2$, are path connected, locally path connected covering spaces of $X, x_{0} \in X, \tilde{x}_{i} \in p_{0}^{-1}\left(x_{0}\right)$
a) if $\left(p_{1}\right)_{*}\left(\pi_{1}\left(\tilde{x}, r_{1}\right)\right) \subset\left(\rho_{2}\right)_{x}\left(\pi_{1}\left(\tilde{x}_{2}, \tilde{x}_{2}\right)\right)$
then p_{1} lifts to a covering space $p: \tilde{x}_{1} \rightarrow \tilde{x}_{2}$ taking \tilde{x}_{1} to \tilde{x}_{2}
b) $\left(\tilde{x}_{1}, \tilde{x}_{1}\right)$ and $\left(\tilde{x}_{2}, \tilde{x}_{2}\right)$ are isomorphic covering spaces of x by an isomorphism taking \widetilde{x}_{1} to \widetilde{x}_{2}

$$
\left(\rho_{1}\right)_{*}\left(\pi_{1}\left(\tilde{x_{1}}, r_{1}\right)\right)=\left(\rho_{2}\right)_{*}\left(\pi_{1}\left(\tilde{x}_{2}, \tilde{x}_{2}\right)\right)
$$

c) $\left(\tilde{x}_{1,}, p_{1}\right)$ and $\left(\tilde{x}_{2}, p_{2}\right)$ are isomorphic covering spaces of X \Leftrightarrow
$\left(p_{1}\right)_{*}\left(\pi_{1}\left(\tilde{x}, r_{1}\right)\right)$ is conjugate to $\left(p_{2}\right)_{x}\left(\pi_{1}\left(\widetilde{x}_{2}, \tilde{x}_{2}\right)\right)$
Proof: a) by $T^{m} 23$ we get a lift $p: \tilde{x}_{1} \rightarrow \tilde{x}_{2}$ taking \tilde{x}_{1} to \tilde{x}_{2}
 we now show p a covering map $x \in \tilde{X}_{2}$ let U be a nbhd of $p_{2}(x)$ in X that is evenly covered by P_{1} and P_{2}
so \exists a unique \tilde{U} in \tilde{X}_{2} st. $x \in \tilde{U}$ and $\left.p_{2}\right|_{\tilde{V}}: \tilde{V} \rightarrow U$ is a homeomorphism
let $P^{-1}(\tilde{U})=\bigcup_{\alpha} \tilde{U}_{\alpha}$, clearly $\bigcup_{\alpha} \tilde{U}_{\alpha}<\tilde{p}_{1}^{-1}(U)$ so $p_{1} l_{\tilde{U}_{\alpha}}: \tilde{U}_{\alpha} \rightarrow U$ a home.
so $\left.p\right|_{V_{\alpha}}=\left.\left.p_{2}^{-1}\right|_{V_{\alpha}} \circ p_{1}\right|_{V_{\alpha}}$ is a homeomorphism $\tilde{U}_{\alpha} \rightarrow \tilde{U}$
\therefore each point in p has an evenly covered unbid.
b) \Leftrightarrow clear
\Leftrightarrow let $\tilde{p}_{1}: \tilde{x}_{1} \rightarrow \tilde{x}_{2}$ be lift of p_{1}

$$
\tilde{p}_{2}: \tilde{x}_{2} \rightarrow \tilde{x}_{1} \text { be lift of } p_{2}
$$

$$
\begin{aligned}
& \tilde{X}_{2} \xrightarrow{\widetilde{p_{2}}} \tilde{x}_{1} \tilde{p}_{1} \longrightarrow \tilde{x}_{2} \\
& p_{2} \doteq \underset{x}{d} \doteq p_{1} \cdot p_{2} \\
& x
\end{aligned}
$$

note: $\tilde{p}_{1} \circ \tilde{p}_{2}: \tilde{x}_{2} \rightarrow \tilde{x}_{2}$ takes \tilde{x}_{2} to \tilde{x}_{2} and is a lift of p_{2} to \tilde{x}_{2}

$$
\begin{aligned}
& {\tilde{\tilde{p}_{1}}+\tilde{\tilde{p}}_{2}}_{\tilde{x}_{2}}^{\tilde{x}_{2}} \underset{\tilde{p}_{2}}{ }{ }^{\left[p_{2}\right.}
\end{aligned}
$$

but so is $\operatorname{id}_{X_{2}}: \tilde{x}_{2} \rightarrow \tilde{x}_{2} \therefore$ by lemma $24, \tilde{p}_{1} \circ \tilde{\rho}_{2}=i d_{\tilde{x}_{2}}$
similarly $\quad \tilde{p}_{2} \circ \tilde{p}_{1}=i d \tilde{x}_{1}$
$\therefore \tilde{p}_{1}$ and \tilde{p}_{2} are homeomorphisms.
c) clear from lemma 22 and b)

A space X is semilocally simply connected if each point $x \in X$ has a neighborhood U s.t. $\pi_{1}(U, x) \longrightarrow \pi_{1}(X, x)$ is trivial
example:

$$
x=(2)=\bigcup_{n=1}^{\infty} \underbrace{0}_{\underbrace{S_{n}\left(\frac{1}{n}, 0\right)}_{\text {circle of radius } \frac{1}{n} \text { about }\left(\frac{1}{n}, 0\right)} \text { mole: }}
$$

is not semi-locally simply connected
but CW-complexes and manifolds are
Th ${ }^{m}$ 26:
let X be a path connected,
locally path connected, and
semilocally simply connected space
$x_{0} \in X$, Then there is a one-to-one correspondence

$$
\begin{array}{r}
\left\{\begin{array}{l}
\text { base point preserving isomorphism } \\
\text { classes of coverings }(\tilde{x}, p, \tilde{x}) \text { of }\left(x, x_{0}\right)
\end{array}\right\} \longleftrightarrow\left\{\text { subgroups of } \pi_{1}\left(x, x_{0}\right)\right\} \\
\left.\left(\tilde{X}, \tilde{x}_{0}\right) \longleftrightarrow \tilde{x}_{0}\right) \longmapsto \\
\left.\left(p_{*}\left(\pi, \tilde{x}_{H}, \tilde{x}_{H}\right) \longleftrightarrow \tilde{x}_{B}\right)\right) \cong \pi_{1}\left(\tilde{x}, \tilde{x_{0}}\right)
\end{array}
$$

such that 1) if $H<K$, then $\left(\tilde{X}_{H}, p_{H}, \tilde{x}_{k}\right)$ is also a cover of $\left(\tilde{X}_{k}, p_{K}, \widetilde{x}_{K}\right)$
2) If p_{1} in $\left(\widetilde{x}_{1}, \rho_{1}, \tilde{x}_{1}\right)$ lifts to a cover of $\left(\tilde{x}_{2}, \rho_{2}, \tilde{x}_{2}\right)$ taking \tilde{x}_{1} of \widetilde{x}_{2} then $\left(p_{1}\right)_{x}\left(\pi_{l}\left(\tilde{x}_{1}, \tilde{x}_{1}\right)\right)<\left(p_{2}\right)_{*}\left(\pi_{1}\left(\tilde{x}_{2}, \tilde{x}_{2}\right)\right)$
3) $\left[\pi_{l}\left(x_{1}, x_{0}\right): H\right]=n \Leftrightarrow\left(\tilde{x}_{H}, P_{H}, \tilde{x}_{H}\right)$ is a cover of degree n in addition, we have the one-to-one correspondence

$$
\left\{\begin{array}{l}
\text { isomorphism classes of } \\
\text { coverings }(\tilde{x}, p) \text { of } X
\end{array}\right\} \longleftrightarrow\left\{\begin{array}{l}
\text { conjugacy classes of } \\
\text { subgroups of } \pi_{1}\left(x, x_{0}\right)
\end{array}\right)
$$

This is an amazing th m ! There is a "lattice" of subgroups of $\pi_{1}\left(x, x_{0}\right)$ and a "lattice" of covering spaces of X These lattices are the same! we will see there is more to this correspondance later

The unique simply connected cover of x is called the universal cover example:

\{0\}

$$
\leftrightarrow
$$

Proof:
note 1) and 2) follow from Cor 25 once we have the one-to-one corresp.
3) follows from lemma 21
also, once we have a well-defiried map $H<\pi_{1}\left(X, x_{0}\right) \mapsto\left(X_{H}, \rho_{H}, \tilde{x}_{H}\right)$
such that $p_{*}\left(\pi_{1}\left(\tilde{X}_{\mu_{1}} \tilde{x}_{H}\right)\right)=H$
the fact that the $1^{\text {t }}$ correspondance is one-to-one follows from (or $25, b$) and the $2^{\text {nd }}$ correspondance from $\operatorname{lor} 25, c$)
so we are left to construct $\left(X_{H}, \rho_{H}, \tilde{x}_{H}\right)$ given $H<\pi_{1}\left(X, x_{0}\right)$
to this end we call two paths $\gamma, \eta:\{0,1] \rightarrow X$ based at x_{0}, H-equivalent
(f 1) $\gamma(1)=\eta(1)$ and
2) $[\gamma * \bar{\eta}] \in H$

exercise: 1) This is an equivalence relation
2) If $H=\{e\}$ then this is just homotopy rel end points
let $\langle\gamma\rangle$ denote the equivalence class of γ
Set $\tilde{X}_{H}=\left\{\langle\gamma\rangle \mid \gamma\right.$ a path in X based at $\left.x_{0}\right\}$
(this is just a set, but we put a topology on it later)

$$
\begin{aligned}
& p_{H}: \tilde{X}_{H} \rightarrow X:\langle\gamma\rangle \mapsto \gamma(1) \\
& \tilde{x}_{H}=\left\langle e_{x_{0}}\right\rangle
\end{aligned}
$$

note: P_{H} is onto sinice any point $x \in X$ is connected to x_{0} by a path We want to define a to pology on \widetilde{X}_{H}, but first we need to undestand something about the topology on X

Claim: $U=\left\{U \subset x: U\right.$ open, path -connected and $\pi_{1}\left(U_{1} x\right) \rightarrow \pi_{l}(x, x)$ trivial, some $\left.x \in U\right\}$ is a basis for the topology on X
(recall, a collection of open sets in X is a basis
for the topology on X if $\forall x \in X$ and open set U with $x \in U$ \exists an open set O in the collection st $x \in O \subset U$. 2.e. any open set is a union of sets in the collection)

Pf: note: if $\pi_{1}\left(v_{1} x\right) \rightarrow \pi_{1}(x, x)$ trivial
then $\pi_{1}(U, y) \rightarrow \pi_{1}(x, y)$ trivial $\forall y \in U$ since

$$
\begin{aligned}
& \pi_{1}(v, x) \longrightarrow \pi_{1}(x, x) \\
& \phi_{n} \downarrow \cong \stackrel{\cong}{\equiv} \leqq \phi_{n} \quad \text { h path } y \text { to } x \\
& \pi_{l}\left(v_{1} y\right) \rightarrow \pi_{l}(x, y)
\end{aligned}
$$

also, if $U \in U$ and $V \subset U$ is open and path connected
then $\pi_{1}(V, x) \underbrace{\rightarrow \pi_{i}(U, x) \rightarrow}_{\text {trivial }} \pi_{i}(x, x)$

$$
\therefore V \in U
$$

now X semilocally simply connected says for any $x \in X$ and open set U containing x, ヨ open set V st. $x \in V$ and $\pi_{1}(V, x) \rightarrow \pi_{1}(X, x)$ trivial so $U \cap V$ open set containing x and $\pi_{1}(U \cap V, x) \rightarrow \pi(x, x)$ trivial X locally path connected $\Rightarrow \exists$ open W st. $x \in W \subset U \cap V$ and W is path connected
from above $\pi_{1}(W, x) \rightarrow \pi_{1}(x, x)$ trivial
so $W \in U$ and U is a basis for topology on X.
for each $U \in U$ and γ a path x_{0} to a point in U
set $U_{\gamma}=\left\{\langle\gamma * \eta\rangle \mid \eta\right.$ a path in $\left.U_{s t .} \eta(0)=\gamma(1)\right\}$
note $U_{\gamma} \subset \tilde{X}_{H}$

Claim: $\left\{U_{\gamma}\right\}_{\substack{v \in u \\ \gamma \text { path } x_{0} \text { to }}}$ forms a basis for a topology on \tilde{X}_{H} pt inv
(recall, a collection of sets in a set form a basis for a topology if given any two sets U, V in collection and a point $x \in U \cap V, \exists W$ in collection st. $x \in W \subset U \cap V$ and the set is the union all els in collection)
Pf:
note: 1) if $\langle\gamma\rangle=\langle\delta\rangle$, then $U_{\gamma}=U_{\delta}$ (so can write $U_{\langle\gamma\rangle}$)
indeed, it $\gamma \sim \delta$, then $\gamma * \eta \sim \delta * \eta \quad \forall \eta$ path m U with $\eta(0)=\gamma(1)$

$$
\begin{gathered}
\text { since }(\gamma \times \eta) \times(\overline{\delta \times \eta})=\gamma_{\times \eta \times \bar{y} \times \bar{\delta}} \\
\sim \gamma_{\times} \bar{\delta} \\
\text { so }[\gamma \times \eta \times \overline{\delta \times \eta}] \in H .
\end{gathered}
$$

2) $p: U_{\langle\gamma\rangle} \rightarrow U$ is onto (since U path connected)
3) $p: U_{\langle\gamma\rangle} \rightarrow U$ is one-to-one
indeed, if $p(\langle\gamma * \eta\rangle)=p\left(\left\langle\gamma \times \xi^{\prime}\right\rangle\right)$, then $(\gamma \times \eta)(1)=\left(\gamma * y^{\prime}\right)(1)$
so $\eta \times \overline{\eta^{\prime}}$ is a loop in U
based at $x \therefore \eta \times \bar{\eta}^{-}$is homotopically trivial
$\Rightarrow \eta \sim \eta^{\prime}$ rel end points in X
$\Rightarrow \gamma_{n} \eta \sim \gamma_{x} \eta^{\prime}$ rel end points

$$
\Rightarrow\left[(\gamma * \eta) * \overline{\left(\gamma * \eta^{\prime}\right)}\right]=\left[e_{x_{0}}\right] \in H
$$

so $\langle\gamma \times \eta\rangle=\langle\gamma \times \eta\rangle$,
4) If $\left\langle r^{\prime}\right\rangle \in U_{\langle\gamma\rangle}$, then $U_{\left\langle r^{\prime}\right\rangle}=U_{\langle\gamma\rangle}$
indeed, by hypothesis $\exists \eta$ a path in U

$$
\text { st. }\left\langle\gamma^{\prime}\right\rangle=\langle\gamma \times \eta\rangle
$$

so we can take $\gamma \times \eta$ to represent γ^{\prime} by 1)
if $\langle\delta\rangle \in \bigcup_{\left\langle\gamma^{\prime}\right\rangle}$, then $\delta=\left(\gamma_{x} \eta\right) \times \eta^{\prime}=\gamma_{x}\left(\eta \times \eta^{\prime}\right)$

$$
\text { so } \left.\langle\delta\rangle \in U_{\gamma}\right\rangle
$$

similarly $\langle\delta\rangle \in\langle\delta\rangle \Rightarrow\langle\delta\rangle \in\left\langle\gamma_{\gamma^{\prime}}\right\rangle$
now if $\langle\delta\rangle \in U_{\langle\gamma\rangle} \cap V_{\left\langle\gamma^{\prime}\right\rangle}$, then $U_{\langle\gamma\rangle}=U_{\langle\delta\rangle}$ and $V_{\left\langle\gamma^{\prime}\right\rangle}=V_{\langle\delta\rangle}$
so if $W \in U$ s.t. $W \subset U \cap V$ and $\delta(1) \in W$
then $W_{\langle\delta\rangle} \subset U_{\langle\delta\rangle} \cap V_{\langle\delta\rangle}=U_{\langle\gamma\rangle} \cap V_{\left\langle\gamma^{\prime}\right\rangle}$
clearly \tilde{X}_{H} is a union of all $U_{\langle r\rangle}$'s
so we have a basis for a topology on \tilde{X}_{H}
Claim: with above topology $\left(\tilde{X}_{H}, P_{H}\right)$ is a covering space of X
Pf: note: $\forall U \in U, \gamma$ paths x_{0} to pt in U
$\left.P_{H}\right|_{U_{\langle r\rangle}}: U_{\langle r\rangle} \rightarrow U$ a homeomorphism indeed, P_{H} is a bijection by 2) and 3)
$\left.P_{H}\right|_{V_{\langle\gamma\rangle}}$ is contivicuous since any basic open set $V \subset U$ and any path δ from x_{0} to pt in V

$$
\left(\left.P_{H}\right|_{U_{\langle\gamma\rangle}}\right)^{-1}(V)=V_{\langle\delta\rangle} \quad \therefore \text { open }
$$

the above argument also shows that basic open sets in Ur> map to basci open sets in U
$\therefore P_{H} \|_{U_{\langle\gamma\rangle}}$ a homeomorphism/
note this in plies P is continuous now if $x \in X$, then let $U \subset U$ be a set containing x
$p^{-1}(U)=$ union of $U_{\langle\gamma\rangle}$ as γ runs through all paths x_{0} to pt in U and $\left.P\right|_{U_{\langle\gamma\rangle}}: U_{\langle\gamma\rangle} \rightarrow U$ homeomorphism.
Claim: $\left(\rho_{H}\right)_{*}\left(\pi_{1}\left(\tilde{X}_{H}, \tilde{x}_{H}\right)\right)=H$
Pf: if $[\gamma] \in H$, then let $\gamma_{t}(s t)$ be the path

$$
\begin{aligned}
\gamma_{t}:[0,1] & \longrightarrow x \\
s & \longmapsto t s
\end{aligned}
$$

note: $\tilde{\gamma}:[0,1] \rightarrow \tilde{X}_{H}$ is a loop since $\tilde{\gamma}(0)=\left\langle e_{x_{0}}\right\rangle$

$$
t \longmapsto\left\langle\gamma_{t}\right\rangle
$$ and $\tilde{\gamma}(1)=\langle\gamma\rangle=\left\langle e_{x_{0}}\right\rangle$

moreover $p_{H} \circ \tilde{\gamma}=\gamma$

$$
\therefore[\gamma]=\operatorname{iniage}\left(P_{H}\right)_{*}
$$

now if $[\gamma] \& H$, then the path

$$
\begin{aligned}
\tilde{\gamma}:\{0,1] & \tilde{X}_{H} \\
& +\longmapsto\left\langle\gamma_{+}\right\rangle
\end{aligned}
$$

is clearly the lift of γ based at \widetilde{x}_{H}
and $\tilde{\gamma}(1)=\langle\gamma\rangle$
but $\langle\gamma\rangle \neq\left\langle e_{x_{0}}\right\rangle=\tilde{x}_{H}$ since $[\gamma] \notin H$
$\therefore[\gamma] \&$ image $\left(\rho_{H}\right)_{k}$ by lemma 21,2)
let $p: \tilde{X} \rightarrow X$ be a covering space
a deck transformation or covering transformation is a covering space isomorphism $f: \tilde{x} \rightarrow \tilde{x}$
the set $G(\tilde{x})$ of deck transformations clearly is a group under the operation of composition
examples:
1)

$\phi_{k}: S^{\prime} \rightarrow S^{\prime} \quad$ is a covering transformation $\theta \mapsto \frac{2 \pi k}{n}$

If f is any deck transformation then $f\left(\tilde{x}_{1}\right)=\tilde{x}_{2}$ for some i, but $\phi_{i}\left(\tilde{x}_{1}\right)=\tilde{x}_{i}$ too
so by lemma 24, $f=\phi_{i}$ (since covering
so $G(\tilde{x})=\mathbb{Z} \mathbb{Z}$
transforms are lifts of P_{n})
2)

If we lift b to \tilde{x}_{3} then it is a loop but if we left to \tilde{x}_{2} or \tilde{x}_{1} it is a path so no deck trans. taking \tilde{x}_{3} to \tilde{x}_{1} or \tilde{x}_{2} similarly cant send \tilde{x}_{2} to \tilde{x}_{1} or \tilde{x}_{3}
so any deck trans fixes all $\tilde{x}_{i}:$ is identity

$$
\therefore G(\tilde{x})=\{1\}
$$

A covering space $\rho: \tilde{x} \rightarrow X$ is called normal if $\forall x \in X$ and $\tilde{x}, \tilde{x}^{\prime} \in \rho^{-1}(x)$

$$
\exists \phi \in G(\tilde{x}) \text { s.t. } \phi(\tilde{x})=\tilde{x}^{\prime}
$$

so example 1) is normal but example 2) is not.
Th ${ }^{\text {m }} 27$:
let $p:\left(\widetilde{X}, \tilde{E_{0}}\right) \rightarrow\left(X, x_{0}\right)$ be a path connected, locally path connected covering space of a space X
let $H=\rho_{*}\left(\pi_{l}\left(\tilde{x}, \tilde{x}_{0}\right)\right)<\pi_{l}\left(x, x_{0}\right)$, then

1) (\tilde{x}, ρ) is normal $\Leftrightarrow H$ is a normal subgroup of $\pi_{1}\left(x_{,} x_{0}\right)$
2) $G(\tilde{X}) \cong N(H) / H \quad$ where $N(H)$ is the "normalizer" of H, i.e. largest subgroup of $\pi_{1}\left(X_{x_{0}}\right)$ containing H as a normal subgroup

Remark: If $\rho: \tilde{x} \rightarrow X$ normal, then $G(\tilde{x})=\pi_{1}\left(x, x_{0}\right) / \rho_{*}\left(\pi_{i}\left(\tilde{x_{1}}, \tilde{x}_{0}\right)\right.$
in particular, for the universal cover $p: \tilde{X} \rightarrow x$

$$
G(\tilde{x})=\pi_{1}\left(x, x_{0}\right)
$$

Proof:

1) \Leftrightarrow let $[\gamma] \in \pi_{l}\left(X, x_{0}\right)$
and $\tilde{\gamma}$ a lift of γ based at \tilde{x}_{0}
set $\tilde{x}_{1}=\tilde{\gamma}(1)$
from lemma $22^{\text {(proof of) }}[\gamma] \rho_{*}\left(\pi_{1}\left(\tilde{X}, x_{1}\right)\right)[\gamma]^{-1}=\rho_{*}\left(\pi_{1}\left(\tilde{x}, \tilde{x_{0}}\right)\right)$
by hypothesis $\exists \phi \in G(\tilde{x})$ st. $\phi\left(\tilde{x_{1}}\right)=\tilde{x}_{0}$
so $\phi_{x}: \pi_{l}\left(\tilde{x}_{1} \tilde{x}_{1}\right) \rightarrow \pi_{1}\left(\tilde{x}, \tilde{x}_{0}\right)$ an isomorphism

$$
\therefore \quad \rho_{x}\left(\pi_{l}\left(\tilde{x}_{,} \tilde{x}_{0}\right)\right)=\rho_{x} \cdot \phi_{x}(\pi,(\widetilde{x}, \tilde{x}, \mid))=\rho_{x}\left(\pi_{l}\left(\tilde{x}, \tilde{x}_{1}\right)\right)
$$

and $[r] H[r]^{-1}=H$
\Leftrightarrow let \tilde{x}_{0} and \tilde{x}_{1} be two point in $p^{-1}\left(x_{0}\right)$

$$
\text { and } H_{1}=P_{*}\left(\pi_{1}\left(\tilde{x}, \tilde{x_{1}}\right)\right)
$$

let h be a path in \tilde{X} from \tilde{x}_{0} to \tilde{x}_{1} and $\gamma=\rho \circ h$
by lemma $22,[\gamma] H_{1}[\gamma]^{-1}=H$
$\therefore H=H_{1}$ since H is normal

1. $\rho_{*}\left(\pi_{1}\left(\tilde{x}, \tilde{x}_{1}\right)\right)=\rho_{x}\left(\pi_{1}\left(\tilde{x}, x_{0}\right)\right)$
\therefore by $\mathrm{Th}^{\mathrm{H}} 23 \mathrm{~B}$ lifts of ρ to ϕ_{1} and ϕ_{2}
note: $\phi_{2} \circ \phi_{1}$ is a lift of ρ that fixes \tilde{x}_{1}

$$
\text { so is } i d_{\tilde{x}} \quad \therefore \quad \phi_{2} \circ \phi_{1}=i d_{\tilde{x}}
$$

similarly $\phi_{1} \circ \phi_{2}={ }^{1 d} \tilde{x}_{\tilde{x}}$
$\therefore \phi_{1}$ a deck transform taking \tilde{x}_{1} to \tilde{x}_{0}
exercise: for any $x \in X$ and $\tilde{x}, \tilde{x}^{\prime} \in P^{-1}(X)$ show $\exists \phi \in G(\tilde{x})$

$$
\text { st. } \phi(\tilde{x})=\tilde{x}^{\prime}
$$

2) from above if $[\gamma] H[\gamma]^{-1}=H$ then $\exists \phi \in G(x)$ sit $\phi\left(\tilde{x}_{0}\right)=\tilde{\gamma}(1)$
($\tilde{\gamma}$ lit t based at \tilde{x}_{0})
so we get a map

$$
\Phi^{\prime} N(H) \rightarrow G(\tilde{x})
$$

Clami: Φ a homomorphism
suppose $\phi_{2}=\Phi\left(\left[r_{2}\right]\right)$ for $\left[r_{2}\right] \in N(H) \quad 1=1,2$

$$
\phi_{1}\left(\tilde{x}_{0}\right)=\tilde{x}_{i} \text { so } \tilde{\gamma}_{1} \text { path } \tilde{x}_{0} \text { to } \tilde{x}_{2}
$$

note: $\tilde{\gamma}_{1} *\left(\phi, 0 \tilde{\gamma}_{2}\right)$ is a path \tilde{x}_{0} to $\phi_{1}\left(\tilde{x}_{2}\right)$

and $\left[p \circ\left(\tilde{\gamma}_{1} *\left(\phi_{1}, \tilde{\gamma}_{2}\right)\right]=\left[\gamma_{1} * \gamma_{2}\right]=\left[\gamma_{1}\right] \cdot\left[\gamma_{2}\right]\right.$
so $\phi_{1} \circ \phi_{2}$ is $\Phi\left(\left[r_{1}\right] \cdot\left[r_{2}\right]\right)$,
Clam: Φ is surjective
let $\phi \in G(\tilde{x})$ take a path h in \tilde{X} from \tilde{x}_{0} to $\tilde{x}=\phi\left(\tilde{x}_{0}\right)$ $\gamma=p o h$ is a loop in X
and from above $[\gamma] H[\gamma]^{-1}=H$ so $[\gamma] \in N(H)$
and $\Phi([\gamma])=\phi$
Claim: $\operatorname{ker} \Phi=H$
if $[\gamma] \in H$, then $\tilde{\gamma}(1)=\tilde{x}_{0}$ so $\Phi([\gamma])=i d \tilde{x}$
$\therefore H \subset \operatorname{ker} \Phi$
if $[\gamma] \in \operatorname{ker} \Phi$, then $\tilde{\gamma}(1)=\tilde{x}_{0}$ and so $\tilde{\gamma}$ a loop

$$
\therefore[\gamma] \in H
$$

a group action on a topological space X is a pair (G, ρ) where G is a group, and
$p: G \rightarrow$ Homeo (x) is a homomorphism
\uparrow group of homeomorphisms
if G acts on X then we can form the quotient space X / G where two points x_{1}, x_{2} are identified if $\exists g \in G$ st. $\rho(g)\left(x_{1}\right)=x_{2}$ this is called the orbit space

Th ${ }^{\text {m }} 28:$
let G be a group action on X such that

* $\forall x \in X, \exists$ a nh U of x so that $g_{1} \cup \cap g_{2} \cup \neq \varnothing \Rightarrow g_{1}=g_{2}$
then 1) $p: X \rightarrow X / G$ is a normal covering space

2) $G \cong G(x \rightarrow X / G)$ if x is path connected
3) $G \cong \pi(x / G) / \rho_{*}\left(\pi_{1}(x)\right)$ if X is path connected and locally path connected.

Proof: fairly easy
exercise or see Hatcher
exercise: if G is finite and G acts freely on X (1.e. has no fixed points) then the action on X satisfies *

2) $S^{n} \rightarrow \mathbb{R} P^{n}$
$z / 2 z$ action

